
CS106B
Spring 2012

Handout #07M
April 6, 2012

Debugging with Xcode

This handout has many authors including Eric Roberts, Julie Zelenski,
Stacey Doerr, Justin Manis, Justin Santamaria, and Jason Auerbach.

Because debugging is a difficult but nonetheless critical task, it is important to learn the tricks of the
trade. The most important of these tricks is to get the computer to show you what it’s doing, which is
the key to debugging. The computer, after all, is there in front of you. You can watch it work. You
can’t ask the computer why it isn’t working, but you can have it show you its work as it goes. Modern
programming environments usually come equipped with a debugger, which is a special facility for
monitoring a program as it runs. By using the Xcode debugger, for example, you can step through the
operation of your program and watch it work. Using the debugger helps you build up a good sense of
what your program is doing, and often points the way to the mistake.

This handout is designed for use with Xcode version 3. If you are using an earlier version of Xcode,
the screenshots will look a bit different, but the overall strategy will be similar.

Using the Xcode debugger

The Xcode debugger is a complicated environment, but with a little patience, you should be able to
learn it to the point where you code more efficiently and productively.

The tool bar for Xcode includes a command Build and Go that you can use to debug your program.
The mini-debugger gives you the ability to stop your program midstream, poke around and examine the
values of variables, and investigate the aftermath after a fatal error to understand what happened.
When you choose the Debug menu item, it sets up your program and then brings up the debugger
window without starting program execution. At this point, you control the execution of the program
manually using the buttons on the toolbar in the debugger window. You can choose to step through the
code line-by-line, run until you get to certain points, and so on.

When a program starts with debugging enabled, Xcode opens a debugging toolbar containing a set of
icons. The toolbar icons you should become familiar with are the first five in the list: Continue,
Pause, Step Over, Step Into, and Step Out. These icons and their corresponding commands are
detailed in Figure 1.

The Continue will start the program from where it left off. The Pause button is useful if the program
is in an infinite loop or if you want to stop the program manually to use the debugger. (There is also a
Tasks button with a stop sign on the Xcode control strip that terminates execution of the program if
you want to return to editing.) Ordinarily, the program will continue to run until you click the Pause

button or until it encounters a breakpoint. Setting a breakpoint (as described below) makes it possible
for you to pause the program when it reaches a section of code that you want to investigate in more
detail.

Once your program is paused, the bottom pane of the debugger window will show the current function
that is executing and a red arrow to the left of the code shows the next line to be executed.
Choosing Continue causes your program to continue executing. The three Step buttons, by contrast,
give you more fine-grained control over how the execution proceeds, which makes it possible to watch
exactly what’s happening as you search for bugs in your code.

- 1 -

To get a better sense as to how this entire process works, take a look at the example in Figure 2, which
shows a program stopped before the call to the distanceFromOrigin function. Clicking Step Over

executes the next line of code, automatically calling any functions invoked by that line. As a result,
you can ignore the details of operations that are at lower levels of the code than the part you are
debugging. Clicking Step Over at this point would execute the distanceFromOrigin call and assign it
to distance without having to step through the details of distanceFromOrigin. The Step Into

command makes it possible to drop down one level in the stack and trace through the execution of a
function or a procedure. In Figure 2, the debugger would create the new stack frame for the
distanceFromOrigin function and return control back to the debugger at the first statement of
distanceFromOrigin. The Step Out command executes the remainder of the current function and
returns control to the debugger once that function returns. Step Over executes the next line of code,
automatically calling any functions invoked by that line. As a result, you can ignore the details of
operations that are at lower levels of the code than the part you are debugging. For example, you
would hate to trace through the steps involved in each call to cout, and the Step Over button allows us
to skip all of the details.

In Figure 2, calling Step Over would execute the distanceFromOrigin call and assign it to distance
before control returns to the debugger after executing that line. The Step Into command makes it
possible to drop down one level in the stack and trace through the execution of a function or a
procedure. In Figure 2, the debugger would create the new stack frame for the distanceFromOrigin
function and return control back to the debugger at the first statement of distanceFromOrigin. The
Step Out command executes the remainder of the current function and returns control to the debugger
once that function returns.

- 2 -

Figure 1. Debugger toolbar icons

Starts the program running again after it has been stopped at a
breakpoint. use this if you are finished looking at the area of code
and want the program to proceed without stopping at each line as
it does with the various step buttons.

Stops the program wherever it happens to be.

Executes one step in the program, at the current level. If the
program calls a function, that function is executed all at once,
rather than by stepping through it.

Stops at the first line of the first function called on this line.

Runs the program until the current function returns.

Thread switching

Occasionally, when you get an error or press the Pause button, the stack trace will be some thing that
looks totally unlike any code you’ve written. This is because the process of running your C++ program
actually involves other activities besides the code you have written. Each of these activities is running
under the control of something called a thread, which is a particular style of concurrent process. If you
are using the graphics library, for example, the program needs a separate thread to make sure that the
window is correctly updated. If you find that the stack trace you get after invoking Pause is
completely mysterious, you may have paused one of the other threads besides your own.

If you get such a stack trace, click on the name of the thread. Doing so will give you a panel showing
the currently active threads. Select different threads until you get one that looks like your code.

Using breakpoints

Clicking in the narrow column to the left of the code displayed in the bottom pane sets a breakpoint at
the indicated line. A second or two after you click on the side, a blue pentagon sign appears to indicate
that there is a breakpoint set on that line. When the program is started by the Build and Go command,
it checks to see whether there is a breakpoint on each line that it executes. If there is, the program stops
at that point. Clicking on the pentagon removes the breakpoint.

Breakpoints are an essential component of debugging. A general strategy is to set a few breakpoints
throughout your program; usually around key spots that you know may be bug-prone, such as
computationally intensive or pointer-intensive areas. Then, run your program until you get to a
breakpoint. Step over things for a few lines, and look at your variable values. Maybe step out to the
outer context, and take a look to see that the values of your variables are still what they should be. If
they’re not, then you have just executed over code that contains one or more bugs. If things look well,
continue running your program until you hit the next breakpoint. Lather, rinse, repeat.

- 3 -

Figure 2. Using the Xcode debugger

Getting to the scene of the crime

While running the debugger, it is usually easy to see where exactly a program crashes. On a memory
error where a dialog box pops up (such as an “Access fault exception”), the program immediately halts,
and the debugger window presents the current state of the program right up to the illegal memory
access. Even though the program has terminated, you can see exactly where it stopped, dig around and
look at variable values, look at other stack frames and the variable values in those calls, and do some
serious detective work to see what went wrong.

A call to error has a similar behavior. If there are cases which shouldn’t happen when the code is
running correctly but might if there is a bug, you can add checks for them and call error if the checks
turn out true. This means that if one of those cases occurs, the debugger will stop on the error line so
you can look around and see what’s going wrong.

Sometimes it is not obvious at all as to what is going on and you don’t know where to start. Errors
aren’t being triggered, and there aren’t memory exceptions being raised, but you know that
something’s not right. A great deal of time debugging will not be spent fixing crashes so much as
trying to determine the source of incorrect behavior.

Imagine you have an array of scores. It is perfectly fine when you created and initialized it, but at
some later point, its contents appear to have been modified or corrupted. There are 1000 lines executed
between there and here—do you want to step through each line-by-line? Do you have all day to work
on this? Probably not! Divide and conquer to the rescue! Set a breakpoint halfway through those
1000 lines in question. When the program breaks at that point, look at the state of your memory to see
if everything’s sane. If you see a corrupted or incorrect value, you know that there’s a problem in code
that led to this point. Just restart and set a breakpoint halfway between the beginning of the code path
and the first breakpoint. If everything looks okay to this point, repeat the process for the second half of
the code path. Continue until you’ve narrowed the bug down to a few lines of code. If you don’t see it
right away, take a deep breath, take a break, and come back and see if it pops out at you.

Building test cases

Once your program appears to be working fine, it’s time to really turn up the heat and become vicious
with your testing, so you can smoke out any remaining bugs. You should be hostile to your program,
trying to find ways to break it. This means doing such things as entering values a user might not
normally enter. Build tests to check the edge-cases of your program.

For example, assume you’ve written a function

generateHistogram(Vector<int> & buckets, Vector<int> & scores)

where the buckets vector represents uniformly sized ranges that together cover the range from the
minimum score to the maximum score, which are given by constants. When a score falls in the range
of that specific bucket, the bucket is incremented by one.

An example of an edge case to test would be to have 0 scores. Does the function handle the case where
one or more of the score values may be zero or negative? More than 100? What if the difference
between the lowest score and highest score is not evenly divisible by the number of buckets? Thinking
of the assumptions you’ve made about the input to a function and writing tests that violate those
assumptions can lead to a healthy testing of edge cases.

- 4 -

Seeing the process through

One of the most common failures in the debugging process is inadequate testing. Even after a lot of
careful debugging cycles, you could run your program for some time before you discovered anything
amiss.

There is no strategy that can guarantee that your program is ever bug free. Testing helps, but it is
important to keep in mind the caution from Edsger Dijkstra that “testing can reveal the presence of
errors, but never their absence.” By being as careful as you can when you design, write, test, and
debug your programs, you will reduce the number of bugs, but you will be unlikely to eliminate them
entirely.

- 5 -

